倍福 BK9100/BC9000 通过 ModbusTCP 与 GE RX3i 通讯

一、试验目的:

测试 BK9100/BC9000 和 GE RX3i 通过 ModbusTCP 的通讯功能。

二、试验时间和地点:

2007年4月17日,4月25日,北京西通电子有限公司

三、试验人员:

王宁强(技术支持工程师,德国倍福自动化有限公司北京代表处) 陈明辉(技术工程师,北京西通电子有限公司(GE 授权分销商))

四、试验设备:

倍福产品清单:

- BK9100,1块
- BC9000,1块
- KL1002, 2 块
- KL2012,2块
- KL9010,2块
- KL3132,1块
- KL4132,1块
- GE 产品清单:

IC695CPU310-EL(RX3i), 1 块

IC695ETM001-CC(以太网模块, 10/100MBITS), 1块

IC695PSA040F(电源),1块

- 五、试验步骤:
- (一) 设置
 - 1. 打开当前项目的 Hardware Configuration

2. 双击 Rack 0下的 CPU (Slot2),并将右侧窗口中 Settings 标签下的最后一项设置如下图中红色框中所示:

Settings	Scan	Memory	Faults	Port 1	Port 2	Scan S	ets	Modbus	TCP	Address	Map	Power	• •
Parameters					Values								
Passwords			Enab	Enabled									
Stop-Mode I/O Scanning			Disat	Disabled									
Watchdog Timer (ms)			200	200									
Logic/Configuration Power-up Source				Alwa	Always RAM								
Data Power-up Source			Alwa	Always RAM									
Run/Stop Switch			Enab	Enabled									
Memory Protection Switch			Disat	Disabled									
Power-up Mode			Last	Last									
Modbus Address Space Mapping Type			Stan	Standard Modbus Addressing									

3. 双击 Rack 0 下的以太网模块(Slot4),并将右侧窗口中 Settings 标签下的 IP 地址设置为与 BC9000/BK9100 在同一网段内,如图所示(同时 BK9100 的 IP 地址为 192.168.0.7):

i on	
2	i on 🛛

Parameters	Values						
Configuration Mode	TCP/IP						
Adapter Name	0.4						
Use BOOTP for IP Address	False						
IP Address	192.168.0.10						
Subnet Mask	255.255.255.0						
Gateway IP Address	0.0.0.0						
Name Server IP Address	0.0.0.0						
Max FTP Server Connections	2						
Network Time Sync	None						
Status Address	%100001						
Length	80						
1/0 Scan Set	1						

(二) GE RX3i 作为主站(Client) 读写 BK9100/BC9000 (Server)

1. BC9000/BK9000 的 ModbusTcp 过程映像

- 输入过程映像从地址从0x0000开始(对应于GE 功能块中的地址0x0001)。所 有面向字节的总线端子优先输入到过程映像区中。面向位的总线端子紧随其 后。
- 输出过程映像从地址从0x0800开始(对应于GE 功能块中的地址0x0801)。所有 面向字节的总线端子优先输入到过程映像区中。面向位的总线端子紧随其后。
- Memory Flag过程映像从地址 0x4000开始。(对应于GE 功能块中的地址 0x4001)
- 所有的数字量信号可以直接使用功能 1, 2, 5 和 15 寻址。(直接寻址意味着 使用这几个功能时,数字量端子的映像地址从 0x0000 开始(对应于 GE 功能块 中的地址 0x4001),不考虑面向字节的总线端子。

2. 功能代码

在GE PLC中,通过COMM_REQ功能块来发送请求: (COMM_REQ功能块的使用参见GE 文档GFK2224D)

功能代码1:

 读取线圈状态,地址从0x0001开始(COMM_REQ的Command Block中的 word7 =3003,word9=1,word12=线圈地址,word13=线圈数量(bits))

功能代码2:

 读取DI状态,地址从0x0001开始(COMM_REQ的Command Block中的 word7= 3003,word9=2,word12=DI地址,word13=DI数量(bits))

功能代码3:

- 读取寄存器(Memory Flag),地址从**0x4001**开始(COMM_REQ的Command Block 中的 word7=3003,word9=3,word12=M寄存器地址,word13=M寄存器 数量(words))
- 读取 A0,地址从 0x0801 开始,数字输出的地址排在所有面向字节的总线端子 之后(COMM_REQ 的 Command Block 中的 word7=3003, word9=3, word12 =输出寄存器地址, word13=输出寄存器数量(words))

功能代码4:

● 读取 AI,地址从 0x0001 开始,数字输入的地址排在所有面向字节的总线端子 之后(COMM_REQ 的 Command Block 中的 word7=3003, word9=4, word12 =输入寄存器地址, word13=输入寄存器数量(words))

功能代码5:

- 写单个线圈,地址从0x0001开始(COMM_REQ的Command Block中的 word7= 3004,word9=5,word12=线圈地址,word13=1线圈数量(bits))
 功能代码15:
- 写多个线圈,地址从0x0000开始(COMM_REQ的Command Block中的 word7= 3004,word9=15,word12=线圈地址,word13=线圈数量(bits))

功能代码6:

- 写单个寄存器,地址从0x4001开始(COMM_REQ的Command Block中的 word7 =3004,word9=6,word12=M寄存器地址,word13=1M寄存器数量(bits))
- 写单个AO寄存器,地址从OxO801开始,数字输出的地址排在所有面向字节的 总线端子之后(COMM_REQ的Command Block中的 word7=3004,word9=6, word12=输出寄存器地址,word13=1输出寄存器数量(words))

功能代码16:

- 写多个寄存器,地址从0x4001开始(COMM_REQ的Command Block中的 word7 =3004,word9=16,word12=M寄存器地址,word13=M寄存器数量(bits))
- 写多个AO寄存器,地址从OxO8O1开始,数字输出的地址排在所有面向字节的 总线端子之后(COMM_REQ的Command Block中的 word7=3004,word9=16, word12=输出寄存器地址,word13=输出寄存器数量(words))

3. 程序示例:

- Open a Modbus/TCP Client Connection (3000)
- Send Request to Modbus/TCP Server(3003, 3004)

Open a Modbus/TCP Client Connection

Send Request to Modbus/TCP Server

(三) PC/BC9000 作为主站(Client) 读写 GE RX3i (Server)

1. GE RX3i 的 ModbusTcp 映像地址

- Q区(数字输出): 地址从 0x0001 开始(对应于 BC 功能块中的地址 0x0000)
- I区(数字输入): 地址从 0x0001 开始(对应于 BC 功能块中的地址 0x0000)
- AI区 (模拟输入): 地址从 0x0001 开始(对应于 BC 功能块中的地址 0x0000)
- R区(寄存器): 地址从 0x0001 开始(对应于 BC 功能块中的地址 0x0000)
- 模拟输出不能读写,但是可以通过 R 区间接读写。(GE PLC 中的 Modbus 寄存器 表完全映像到 R 区)

2. 功能代码

在 BC 中,通过 FB_ModbusTcpRequest 功能块来发送请求:(该功能块的使用参见 TwinCAT PLC 帮助文档)

功能代码1:

● 读取线圈状态,地址从0x0000开始

功能代码2:

- 读取DI状态,地址从0x0000开始
- 功能代码3:
- 读取寄存器 (Memory Flag), 地址从**0x0000**开始

功能代码4:

● 读取 AI,地址从 0x0000 开始

功能代码5:

- 写单个线圈,地址从0x0000开始
 功能代码15:
- 写多个线圈,地址从0x0000开始

功能代码6:

- 写单个寄存器,地址从0x0000开始
- 功能代码16:
- 写多个寄存器,地址从 0x4000 开始
- 3. BC9000 程序示例:

PROGRAM MAIN

VAR

ModbusTCP_Open :FB_ModbusTcpOpen;

ModbusTCP_Request	:FB_ModbusTcpRequest;					
bStartOpen	:BOOL:=FALSE;					
BK_IPAddress	:STRING(15):='192.168.0.1';					
bBusyOpen	:BOOL;					
bErrorOpen	:BOOL;					
iErrorID	:WORD;					
Connection	:WORD:=0;					
bStartRequest	:BOOL	:=FALSE;				
bBusyRequest	:BOOL;					
bErrorRequest	:BOOL;					
iErrorIDRequest	:WORD;					
cbResponse	:WORD;					
SendBuffer	:ARRAY[05] OF BYTE	:=1,3,0,0,0,2;			

```
(*1: Unit Identifier *)
  (*3: 功能号,此时为读寄存器 *)
  (*0, 0: 起始地址高,低字节 *)
  (*0, 2: 数据长度高,低字节 *)
  ReceiveBuffer :ARRAY[0..255] OF BYTE;
END_VAR
```

ModbusTCP_Open(bStart	:=bStartOpen,				
		sRemoteIPAddr	:=BK_IPAddress,				
		tTimeOut	:=t#2S);				
bBusyOpen	:=Modbu	sTCP_Open.bBusy;					
bErrorOpen	:=ModbusTCP_Open.bError;						
iErrorID	:=ModbusTCP_Open.iErrorId;						
Connection	:=ModbusTCP_Open.iMyPortNo;						
bStartOpen	:=(Conne	ction=0)AND(NOT	bStartOpen)AND(NOT bBusyOpen);				

ModbusTCP_Request(bStart		:=bStartRequest,			
	sRemoteIPAdd	lr	:=BK_IPAddress,			
	iMyPortNo		:=Connection,			
	pReqBuff	:=Al	DR(SendBuffer),			
	cbReqLen		:=SIZEOF(SendBuffer),			
	pResBuff		:=ADR(ReceiveBuffer),			
	cbResLen	:=SI	ZEOF(ReceiveBuffer));			
bBusyRequest :=ModbusTCP_Request.bBusy ;						

```
bErrorRequest:=ModbusTCP_Request.bError;
```

```
iErrorIDRequest :=ModbusTCP_Request.iErrorId;
```

```
cbResponse :=ModbusTCP_Request.cbResponse ;
```

bStartRequest :=(Connection<>0)AND(NOT bStartRequest) AND (NOT bBusyRequest);

六、结论:

```
通过试验上述的 ModbusTcp 功能均能够正常实现。
```