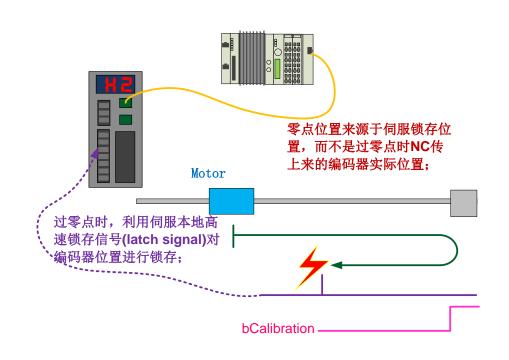
类别	Motion Control	日期	2020.5.8
测试	h.kong@beckhoff.com.cn q.liang@beckhoff.com.cn	部门	系统应用

第三方 EtherCAT 驱动高精度回零——Hardware latch


问题背景:

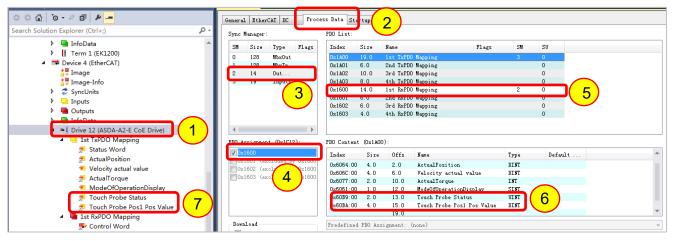
对于 EtherCAT 伺服,若使用倍福驱动(AX5000 或 EL72XX)可以轻而易举实现各种高精度回零,比如 software syn 或者 hardware syn,再或者 hardware latch。而对于第三方 EtherCAT 驱动,在 TwinCAT 中通常采用 Plc Cam 的方式回零,这种方式由于受 PLC 周期影响精度相对较差。那么,第三方驱动如何获得高精度的零点?方法有二:

其一,利用伺服内部自带回零的方式;例如 CANopen DS 402 的 homing 模式,可利用参考点和 Z 脉冲回零,精度比 PLC Cam 方式更准确。这种方式需要对控制模式(6060H)进行切换,稍显繁琐。其二,第三方伺服也可以考虑 hardware syn 或 hardware latch 的方式回零,无需模式切换,直接使用 MC_Home 进行回零。本文主要针对第二种方法以台达 ASD-A2-E 伺服为例展开讨论,不论是 COE 还是 SOE,只要伺服本身支持高速 latch 功能,均可使用本文描述方法实现高精度回零。

测试硬件:

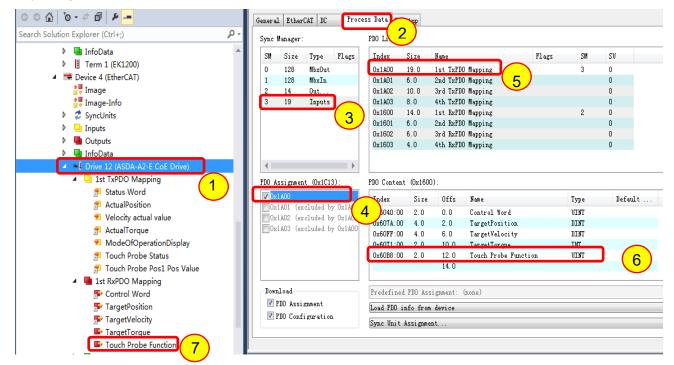
控制器: C5130-0130 : 1 套 驱动器: ASD-A2-0221-E : 1 套 电 机: ECMA-C10802RS : 1 套

置:

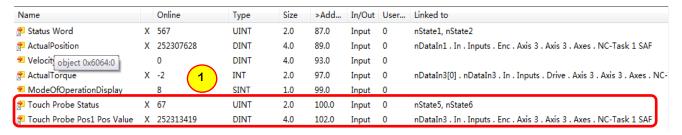

1) 确认接线正确后,扫描并配置伺服,检测电机是否正常;

打开 TwinCAT Manager, 在 Config Mode 下进行 Scan Devices, 配置驱动参数。并激活配置, 检测是否可以正常电机操作。

2) 配置驱动 Latch 值和 Latch 状态 PDO

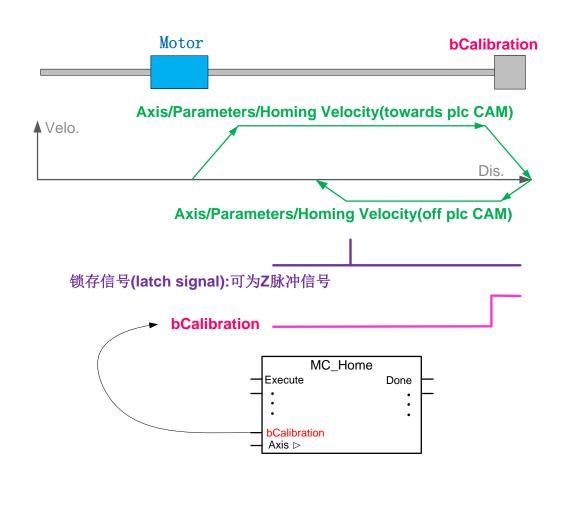

台达驱动中 Latch 值和 Latch 状态对应于 Touch probe pos1 pos value 和 Touch probe Status PDO (60B9h 和 60BAh)。

在 Process Data (步骤②) 中,选择正确的 PDO 配置,本例选择 0x1600 的选项(步骤⑤),在此选项中增加步骤⑥中的两项 PDO,分别是 60B9H(Touch probe pos1 pos value)和 60Bah(Touch probe Status) PDO。这两项 PDO 需要在步骤⑥中单击右键点击'Insert'添加。最终如步骤⑦所示。


3) 配置驱动的 Latch 控制字,不同驱动器品牌,latch 的方式有差异,CANopen 并未定义 latch 功能;台达驱动器的 Latch 控制字对应于 Touch probe Function PDO(60B8h);

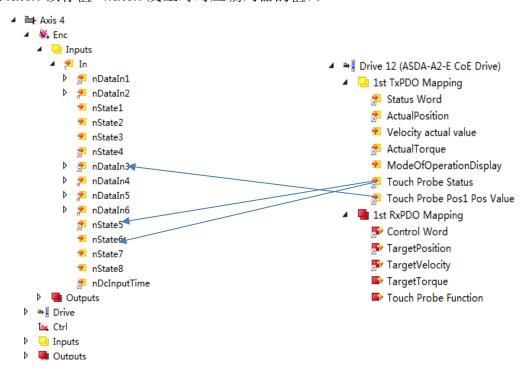
通过如下步骤添加 Touch probe Function PDO,在步骤⑥中单击右键点击'Insert'添加,最终如步骤⑦所示。

4) 链接变量:


如①所示,确保 latch 值和 latch 状态链接到 NC 对应的变量中,这部分在配置 PDO 时通常是自动连接,但倘若需要可手动链接,具体链接详见 Q&A 问题 A;

5) 测试

将 NC/Encoder/Parameter/中的 Homing reference mode 设为 hardware Positive latch,下载参数,测试步骤如下:


- ➤ 使能 MC_Home 功能块,当碰到原点参考点(bCalibration)上升沿后反向离开原点参考点开关, 离开原点开关后轴并未停下,开始寻找 latch 信号。
- ➤ 对于 latch 信号,本次直接采用 Z 脉冲进行 latch,台达伺服若对 Touch probe Function PDO 写入值 21(16#15)时,开启伺服的 Z 脉冲 latch 功能(不是千篇一律写 21,其它品牌伺服应该注意如何设置触发 latch 功能)。当 Z 脉冲到来时 latch 完成,伺服减速停止,MC_home 完成回零动作。

Q & A:

A. 如果既不是台达伺服,又不是倍福伺服,如何确认是否可用 Hardware latch 方式回零点?

首先确保驱动有高速 latch 功能(也可考虑用倍福 XFC 技术),其次确保 NC 中如下的几个输入有正确的链接;nStates5、nStates6 为 NC 锁存状态字(latch 信号是否触发),nDataln3 对应 latch 锁存值(latch 发生时对应编码器的值)。

B. 对于 TwinCAT NC 而言, COE 和 SOE 的 latch 信号连接有何不同?

对于 COE, 有两个 Touch Probe 信号(简称 TP)

NCEncoder Ir	nput	COE	SOE
nDataIn3		Latch 位置	Latch 位置
nState5	Bit 0	Touch probe1 Enable	上升沿捕捉完成
	Bit 1	TP1 上升沿捕捉完成	-
	Bit 2	TP1 下降沿捕捉完成	-
	Bit7	TP1 信号	-
nState6	Bit0	TP2,定义同 nState5	下降沿捕捉完成
			-

C. 可以使用 XFC 的 latch 实现回零吗?

可以,我们以此台达伺服为例且要求采用原点信号的下降沿回零,过程如下:

- ① 将原点信号接入 XFC 模块, 定义一个 XFC 采集的完成信号链接到 NC 的 nState5 的 Bit2。
- ② 将 XFC 采集的位置信号链接到 NC 的 nDtae3.
- ③ 用 MC_HOME 功能块,当电机运动到原点信号时候,原点信号为 1,此时电机会反向运动。

④当电机离开原点信号时候,会产生一个下降沿信号,此时进行 XFC 采集。当 XFC 采集完成后,确认有位置信息读取上来的时候,将定义的 XFC 的采集完成信号置 1,当 nState5 的 Bit2 为 1 时候,就会将采集的位置信号传递给 nDtae3,NC 自动完成回零。

D. EL7211 驱动模块可以使用 Hard Latch、Hard sync 功能来回零吗?

MDP742 的 PDO 的 EL7211 是可以的,但是 DS402 的 PDO 的 EL7211 没有定义 Latch PDO,无法实现该功能。

E. 对 TwinCAT 来说使用 NC 里面直接用 Hard Latch 回零相比于用伺服内部回零有何优缺点?

异同	伺服内部回零	Hardware latch 方式回零
可实现高精度回零	Yes	Yes
零点参考点连接到伺服驱动	Yes	Yes
伺服驱动内部完成	Yes	NO
驱动模式切换(6060H)	Yes	NO
左右极限处理	伺服内部处理	用户程序处理
回零触发及回零动作	伺服内部处理	NC 完成,MC_Home 触发

感谢黄焕然给予指正反馈