
1. Introduction
a. Show Power Point "Framework Control Introduction"
b. Introduce the final solution, what functionalities does the control have
c. Create a new Framework Control named "TcHmiToggleStateControl"
d. Give an overview about all files inside the Framework Control
e. Build the control
f. Link the control with the TcHmiProject
g. Instantiate the control on the Desktop.view

2. HTML code

a. Show Power Point "Framework Control basics"
b. Open Template.html
c. Optional file that is not required (elements are referenced inside Source.js)
d. Don't use static IDs here (because of multiple instantiation)
e. Add the following HTML code:

3. CSS code:
a. Explain difference between Style.css on project layer and Style.css in theme folder --> Themes inside

Framework Control will be introduced later
b. Open Style.css on project layer
c. Copy the CSS classes from the Template.html to avoid typing erros
d. Add CSS class for the container element:

e. Add CSS class for the state control button:

f. Add CSS hover (mouse over) for the button:

g. Add CSS class for the state image:

h. Open Style.css in base theme folder and add theme dependent style for the button:

i. Build the project, reload the Desktop.view (yellow bar) and show current state in LiveView

4. Reference HTML elements inside JavaScript code:

a. Show Power Point "Framework Control Basics - Control lifecycle"
b. Open Source.js
c. Explanations (reference to the shown graphic before)

i. Constructor --> Initialization of member variables
ii. PrevInit --> Called before the attribute setters are called

iii. Init --> Called after the attribute setters are called
iv. Attach --> Called after the control is added to the DOM (e. g. when a page is loaded)
v. Detach --> Called after the control is removed from the DOM (e. g. when a page is unloaded)

vi. Destroy --> Called if the control is destroyed (explicit called by the developer or implicit called
by system if no preload is active)

d. Scroll to __prevInit function and program the following (attention "." is required to find the
elements):

e.

f. Copy the CSS classes from the Template.html to avoid typing erros
g. Set default state icon (just for demo, commented out later)
h. Define base path for the state icon folder using API

i. Build project, reload Desktop.view and show changes

5. Use attributes
a. Show Power Point "Framework Control Basics - Attributes"
b. Open Description.json and scroll to attributes
c. Copy the default type attribute and change the attributes in the following
d. Show each property of the attribute step by step
e. Add attribute for button text:

i. Description.json code:

ii.

iii. Add category "Configuration" (not required, but for priorization of placement in property

window):

iv. Declare member variable with undefined in the constructor of Source.js
v. Add Setter in Source.js and explain the different steps inside a setter (works also with localized

texts, because the binding is resolved by the framework):

vi.

vii. Add getter in Source.js and explain it:

viii.

ix. Add processor in Source.js and explain it:

x.

xi. Build project, reload Desktop.view and show the text function (also with localized text)

f. Add ShowButton attribute:

i. Description.json code:

ii.

iii. Declare member variable with undefined in the constructor
iv. Setter in Source.js:

v.

vi. Getter in Source.js:

vii.

viii. Processor in Source.js:

ix.

x. Build project and show functionality

g. Add State attribute

i. This attribute is a custom datatype
ii. Navigate to Schema/TypeDefinitions and add a new JSON schema to the project

"States.Schema.json"
iii. Schema code:

iv.

v. Description.json: Reference schema under DataTypes:

vi.

vii. Description.json: Add State attribute and use the new data type

viii.

ix. Declare member variable with undefined in the constructor
x. Setter in Source.js:

xi. Getter in Source.js:

xii.

xiii. Processor in Source.js:

xiv.

xv. Build project and show functionality

6. Implement toggle function of the button

a. Declare StateOrder (sequence of the state machine) in the constructor:

b. Add internal function "nextState" under all Setter/Getter/Processors (internal functions are marked

with __myFunction)
c. Implement the function:

d.

e. Call internal function in the attach of the Framework Control

i. Safe reference of this (the control) for other scopes (callback functions)
ii. Add jQuery event listener

iii.

iv. Remove event listener in detach function (to avoid memory leaks):

v.

f. Build project, reload Desktop.view and show functions in LiveView (press the button, the states
should switch regarding the state machine)

7. Events: onStateChanged
a. Show Power Point "Framework Control Basics - Events"
b. Open Description.json and add "onStateChanged" event:

c.

d. Open Source.js and raise event in the __processState() function (at the end):

e.

f. Build project, reload Desktop.view and configure a sample action for the event: Embedded JS with

"alert("Test")"
g. Open live view and show functionality

h. Optional: Show how to raise the event with event parameters (Evalutation only possible in code

behind at the moment, future also in Action and Conditions editor):

i.

8. Functions

a. Show Power Point "Framework Control Basics - Functions"
b. Function without transfer parameter: toggleState

i. This functions triggers the state change functionality of the control from outside
ii. Open Description.json and add the following code

iii.

iv. Add function in Source.js and call internal function "__nextState":

v.

c. Function with transfer parameter: toggleToState

i. This function sets a specific state give by the transfer parameter
(this is only a sample, the function is not really required, because you can call the setter of state
instead)

ii. Open Description.json and add the following code:

iii.

iv. Open Source.js and implement the function (with check of the transfer parameter):

v.

vi. Explain return values (Evaluation only possible in code behind at the moment, in future also in

Actions & Conditions editor)

d. Build project, reload Desktop.view
i. Drop two TcHmiButtons

ii. Button 1: call toggleState
iii. Button 2: call toggleToState (Stop)
iv. Open LiveView and show functionality

9. Zugriffsrechte

a. Show Power Point "Framework Control Basics - Access Rights"
b. Access right: allowStateChange (allows / disallows the change of the state)
c. Description.json:

d. Open Style.css on project layer
i. Comment in the code at the end of the file (default styles for operate forbidden)

ii. This properties are active, if the user has no operate rights for the control
iii. Copy the selector of the button class and add the disallowed operate styles behind it:

iv.

e. Open Source.js and scroll to "__processShowButton"

i. Add the following right query under the exisiting code
ii. Switch classes depending on the rights:

iii.

f. Scroll to internal function "__nextState" and add the following right query at the begin:

g. Scroll to ToggleToState function and add the following right query before the set of the state:

h. Build project, reload Desktop.view
i. Add new user group "Test"
j. Add new user "Tester" which is a member of the group "Test"
k. Disallow the StateChange for the Test group
l. Publish project, login as a Tester --> User has not the rights to switch the state,

see also the different styles

